72 research outputs found

    Multilabel Consensus Classification

    Full text link
    In the era of big data, a large amount of noisy and incomplete data can be collected from multiple sources for prediction tasks. Combining multiple models or data sources helps to counteract the effects of low data quality and the bias of any single model or data source, and thus can improve the robustness and the performance of predictive models. Out of privacy, storage and bandwidth considerations, in certain circumstances one has to combine the predictions from multiple models or data sources to obtain the final predictions without accessing the raw data. Consensus-based prediction combination algorithms are effective for such situations. However, current research on prediction combination focuses on the single label setting, where an instance can have one and only one label. Nonetheless, data nowadays are usually multilabeled, such that more than one label have to be predicted at the same time. Direct applications of existing prediction combination methods to multilabel settings can lead to degenerated performance. In this paper, we address the challenges of combining predictions from multiple multilabel classifiers and propose two novel algorithms, MLCM-r (MultiLabel Consensus Maximization for ranking) and MLCM-a (MLCM for microAUC). These algorithms can capture label correlations that are common in multilabel classifications, and optimize corresponding performance metrics. Experimental results on popular multilabel classification tasks verify the theoretical analysis and effectiveness of the proposed methods

    SEVEN: Deep Semi-supervised Verification Networks

    Full text link
    Verification determines whether two samples belong to the same class or not, and has important applications such as face and fingerprint verification, where thousands or millions of categories are present but each category has scarce labeled examples, presenting two major challenges for existing deep learning models. We propose a deep semi-supervised model named SEmi-supervised VErification Network (SEVEN) to address these challenges. The model consists of two complementary components. The generative component addresses the lack of supervision within each category by learning general salient structures from a large amount of data across categories. The discriminative component exploits the learned general features to mitigate the lack of supervision within categories, and also directs the generative component to find more informative structures of the whole data manifold. The two components are tied together in SEVEN to allow an end-to-end training of the two components. Extensive experiments on four verification tasks demonstrate that SEVEN significantly outperforms other state-of-the-art deep semi-supervised techniques when labeled data are in short supply. Furthermore, SEVEN is competitive with fully supervised baselines trained with a larger amount of labeled data. It indicates the importance of the generative component in SEVEN.Comment: 7 pages, 2 figures, accepted to the 2017 International Joint Conference on Artificial Intelligence (IJCAI-17

    DetectGPT-SC: Improving Detection of Text Generated by Large Language Models through Self-Consistency with Masked Predictions

    Full text link
    General large language models (LLMs) such as ChatGPT have shown remarkable success, but it has also raised concerns among people about the misuse of AI-generated texts. Therefore, an important question is how to detect whether the texts are generated by ChatGPT or by humans. Existing detectors are built on the assumption that there is a distribution gap between human-generated and AI-generated texts. These gaps are typically identified using statistical information or classifiers. In contrast to prior research methods, we find that large language models such as ChatGPT exhibit strong self-consistency in text generation and continuation. Self-consistency capitalizes on the intuition that AI-generated texts can still be reasoned with by large language models using the same logical reasoning when portions of the texts are masked, which differs from human-generated texts. Using this observation, we subsequently proposed a new method for AI-generated texts detection based on self-consistency with masked predictions to determine whether a text is generated by LLMs. This method, which we call DetectGPT-SC. We conducted a series of experiments to evaluate the performance of DetectGPT-SC. In these experiments, we employed various mask scheme, zero-shot, and simple prompt for completing masked texts and self-consistency predictions. The results indicate that DetectGPT-SC outperforms the current state-of-the-art across different tasks.Comment: 7 pages, 3 figure
    • …
    corecore